MSE Master of Science in Engineering

The Swiss engineering master's degree

Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:

  • ​​​​12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
    TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule.
  • 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
    FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können.
  • 6-9 ECTS in Kontextmodulen (CM)
    CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.

In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:

  • Unterricht
  • Dokumentation
  • Prüfung
The Physics of Materials and Engineering Devices (FTP_Physics)

The students understand and are able to explain the basic principles of important engineering devices in relation to material properties and by applying microscopic concepts. These concepts include electrons and holes in solids, energy band structures of metals and semiconductors, polarization mechanisms in dielectrics and in piezoelectric materials, elementary dipole moments in magnetic materials and pairing of electrons in superconductors (Cooper pairs). Actual applications such as thermocouples, photovoltaic cells (solar cells), light emitting diodes (LED), piezoelectric actuators, magnetic sensors and data storage devices can be discussed by means of these concepts. This module will allow the students to understand modern concepts of prevailing technologies and use them in the future.


A solid knowledge of the fundamentals of physics is essential. Notions such as energy, force, thermal energy  kBT, specific heat capacity, oscillations, resonance frequency, waves, electromagnetic field vectors: E, D, B and H, electric capacitance C, dielectric constant epsr and Bohr's model of atoms are mandatory. Also required are simple differential equations and complex numbers, in particular e-iwt.


The students

  • understand the thermal and electric conduction in solids using the kinetic description of particles
  • can relate thermal conduction to electric conduction via microscopic models
  • are able to describe the principles of thermocouples and diodes by means of energy bands, Fermi energy and contact potential
  • can explain the physical origin and technical realization of vertical resolution of scanning probe microscopes (atomic force microscope, scanning tunnelling microscope) in the nanometer range
  • know the classification of magnetic materials and can name examples of their technological applications
  • understand the difference between the Meissner effect of a superconductor and a perfect diamagnetic material
  • are capable to solve quantitative problems to all topics of this module.


Elementary concepts of materials are studied with emphasis on applications. The module is divided into five topics:

  1. Crystallography and quantum physics.
    • Basic principles of quantum physics.
    • Thermal fluctuations and thermal activation (Arrhenius plots).
    • Crystal structure and crystal symmetry (bcc, fcc, hcp), types of bonds and bond energy.
    • Bravais lattices and crystal defects.
  2. Concept of thermal and electrical conduction in solids.
    • Electrical conduction (Drude model), drift velocity, relaxation time, mean free path.
    • Lorentz force and Hall effect, Hall voltage, new Ohm standard.
    • Temperature dependence of resistivity of ideal pure metals.
    • Thermal conduction (Wiedemann-Franz law).
  3. Concept of energy bands in semiconductors, metals and insulators.
    • Schrödinger equation and some applications
    • Electrons and holes, effective electron mass.
    • Doping: n-type, p-type.
    • Ensemble of particles, Fermi-Dirac statistic of conduction electrons.
    • Contacts: ideal p-n junction (diode), pure metal contact and thermocouples.
    • Devices: diode, photovoltaic cell (solar cell), light emitting diode (LED).
  4. Dielectric and piezoelectric materials.
    • Electric polarization mechanisms, dipole moment, polarizability.
    • Local electric field, Clausius Mossotti relation between the polarizability and the dielectric constant.
    • Dielectric constant as a complex quantity, absorption of electromagnetic waves and loss factor.
    • Piezoelectricity, actuators and sensors, scanning tunneling and atomic force microscope (STM/AFM), pyroelectricity.
  5. Magnetic properties and superconductivity.
    • Magnetization and magnetic permeability.
    • Different classes of magnetic materials: diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, ferrimagnetic.
    • Magnetic domains and magnetic data storage
    • Superconductivity: zero resistance and critical current density, generation of large magnetic fields.
    • Measuring magnetic fields: Hall effect, magnetic flux quantization and SQUID (Superconducting Quantum Interference Device).

Lehr- und Lernmethoden

Instruction teaching: presentation and discussion of fundamental concepts.
Exercises: solving quantitative problems and analyzing the physical concepts.
Individual learning using the lecture notes and the textbook.


Principles of Electronic Materials and Devices, Safa O. Kasap, McGraw Hill

Vollständige Modulbeschreibung herunterladen