MSE Master of Science in Engineering

The Swiss engineering master's degree


Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:

  • ​​​​12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
    TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule.
  • 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
    FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können.
  • 6-9 ECTS in Kontextmodulen (CM)
    CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.

In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:

  • Unterricht
  • Dokumentation
  • Prüfung
Embedded Real-time Software (TSM_EmbReal)

Embedded Systems, although they are not visible, they have become integral parts of this world. Embedded Systems essentially consist of two components, hardware and software. In contrast to information systems in the banking world, hardware is more application specific. Due to this fact, the software that interacts directly with the hardware is more specific as well.

Real-time and Concurrency are important issues in Embedded System development, which come on top of the generally valid requirements for correctness and reliability.

The module teaches methods to develop Embedded System Software and deals with the following two complementary aspects:

  • Embedded Programming, Programming close to hardware
  • Abstract Modeling Concepts.

Both parts are based on Object-Oriented Concepts.

Eintrittskompetenzen

  • Programming language C++/C
  • Computer architectures
  • Fundamentals of Operating Systems

Lernziele

Based on requirements, the students will be able to apply the optimal method to develop and verify an Embedded System,

  • on the boundary between hard- and software using modern C++,
  • on application layer using modeling methods.

Modulkategorie

In the first part, the focus is on Near-Hardware-Programming. We use a typical (small) System on Chip (SoC) equipped with a RISC V.

The programming language is C++, the programming environment is Linux.

  • Using C++: showing the huge advantages of C++ for a small SoC
  • ISA Instruction Set Architecture
  • Hardware-Access
  • Concurrency
    • for a SoC
    • for a Linux based System

In the second part, the focus is on modeling, a model driven approach: from requirements, over modeling to the running system

  • Introduction
    • Development Process
    • Generic Software-Architecture
  • Modeling functional requirements
    • System of cooperating state machines
    • CIRO (Communicating Interacting Reactive Objects)
  • Modeling connection software
    • Connection between hardware and reactive system
  • Code Generation
    • Generated Code
    • Strategies
    • Tools
  • Testing executable Models
  • Real-Time Scheduling
    • Multi-Tasking
    • Distribution
    • Task and Event Scheduling
  • Exercises and laboratories using concrete tool-chain and microcontroller

Lehr- und Lernmethoden

  • Ex-cathedra teaching
  • Exercises
  • Self-study (study of papers, case studies)

Vollständige Modulbeschreibung herunterladen

Zurück