MSE Master of Science in Engineering

The Swiss engineering master's degree


Chaque module vaut 3 ECTS. Vous sélectionnez 10 modules/30 ECTS parmi les catégories suivantes:

  • 12-15 crédits ECTS en Modules technico-scientifiques (TSM)
    Les modules TSM vous transmettent une compétence technique spécifique à votre orientation et complètent les modules de spécialisation décentralisés.
  • 9-12 crédits ECTS en Bases théoriques élargies (FTP)
    Les modules FTP traitent de bases théoriques telles que les mathématiques élevées, la physique, la théorie de l’information, la chimie, etc., vous permettant d’étendre votre profondeur scientifique abstraite et de contribuer à créer le lien important entre l’abstraction et l’application dans le domaine de l’innovation.
  • 6-9 crédits ECTS en Modules contextuels (CM)
    Les modules CM vous transmettent des compétences supplémentaires dans des domaines tels que la gestion des technologies, la gestion d’entreprise, la communication, la gestion de projets, le droit des brevets et des contrats, etc.

Le descriptif de module (download pdf) contient le détail des langues pour chaque module selon les catégories suivantes:

  • leçons
  • documentation
  • examen 
Modelling for aviation infrastructure and future mobility (TSM_ModAvi)

The course will focus on operational and infrastructure topics and optimization of systems in terms of current issues and limitations, as wells as future developments in the aviation sector.  

Future developments and important upcoming topics in the industry will be addressed, such as unmanned aircraft systems, new approaches in business models or aircraft and passenger operations.

Compétences préalables

The students are expected to have knowledge on a basic level in:

  • Aviation in general 
  • Basic statistics 
  • Fundamental implementation skills (reading a csv file, performing basic operations, e.g. as done in INFRA-AA/AD)

 

Objectifs d'apprentissage

The students are able to:

  • perform basic analysis, modelling and prediction tasks based on a given data set
  • perform basic optimizations (including definition of objective, implementation and interpretation of results)
  • present and report about complex modelling results adequate for a specified target audience
  • assess future developments in the aviation industry and plan appropriate reactions 
  • successfully leverage AI-Tools (such as LLMs) for implementation and analysis tasks

 

Contenu des modules

The course will start with an overview of aviation infrastructure, its challenges, limitations and potential future development scenarios. 

Basic concepts of mathematical analysis, problem modelling and predictions for different scenarios will be made for chosen infrastructure topics (either proposed by the students to support their learning in given fields or by the lecturer, as agreed upon in class). 

Throughout the course the theoretical foundations will have to be implemented and analyzed by the students with the help of AI-Tools (e.g. ChatGPT, Google AI Studio, etc.) as those tools will become an essential part for the next generation of aviation professionals.

Méthodes d'enseignement et d'apprentissage

The module will take place in a blended learning setting. This comprises: 

  • Conventional lectures in class
  • Instruction videos
  • Implementation problems and leveraging AI for implementations
  • Analysis of case studies
  • Oral presentations
  • Scientific paper study 

 

Bibliographie

t.b.d

Télécharger le descriptif complet

Retour