MSE Master of Science in Engineering

The Swiss engineering master's degree


Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie: 

  • 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
    I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati.
  • 9-12 crediti ECTS in basi teoriche ampliate (FTP)
    I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione 
  • 6-9 crediti ECTS in moduli di contesto (CM)
    I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.

La descrizione del modulo (scarica il pdf)riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:

  • Insegnamento
  • Documentazione
  • Esame
Advanced robotics (TSM_AdvRobot)

In this module, basic and advanced robotics knowhow is developed necessary for leading-edge, innovative industrial and service applications with robot manipulators.

Requisiti

  • Linear algebra and differential equations
  • Feedback control systems
  • Actuation and sensory systems
  • Basic programming skills
  • Basic robotics knowhow (recommended)

Obiettivi di apprendimento

At the end of this course, the student will have earned the knowledge necessary to build a complete robot system as well as acquired the skills to develop industrial and service applications based on commercial robots beyond their standard interfaces.

Categoria modulo

  • Robot Kinematics
    • Homogeneous transformation matrices and quaternions
    • Forward, inverse and instantaneous kinematics of serial and parallel robots
    • Kinematic redundancies and subspaces
    • Trajectory generation
  • Robot Dynamics
    • Motion state: speed, acceleration and jerk
    • Dynamic models of multibody systems
    • Modeling friction, gear backlash, efficiency and stiffness
    • Robot dynamic equations for simulation and control
  • Robot Control
    • Linear and nonlinear control
    • Trajectory, force and hybrid control
    • Adaptive, model-based, vision-based control
    • Haptic control
  • Robot Design
    • Task requirements and kinematic configuration
    • Joint types, actuators, sensors, communication busses and architectures
    • Control systems and real-time restrictions
  • Applications
    • Industrial and service use cases
    • Collaborative and interactive robots
    • Research topics
    • Safety and ethics in robotics

Metodologie di insegnamento e apprendimento

  • Ex-cathedra teaching
  • Case studies
  • Exercises
  • The theory learned in class is applied in real robotic applications

Bibliografia

  • B. Siciliano, O. Khatib eds., “Springer Handbook of Robotics”, Springer-Verlag, Berlin, 2016.
  • J. J. Craig, “Introduction to Robotics: Mechanics and Control”, 3rd edition, Pearson Prentice Hall, USA, 2005.
  • P. Corke, “Robotics, Vision and Control”, Springer-Verlag, Berlin, 2017.

Scarica il descrittivo completo del modulo

Indietro