Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie:
- 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati. - 9-12 crediti ECTS in basi teoriche ampliate (FTP)
I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione - 6-9 crediti ECTS in moduli di contesto (CM)
I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.
La descrizione del modulo (scarica il pdf)riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:
- Insegnamento
- Documentazione
- Esame
After successful studying students are capable to solve selected practical mathematical problems by combining appropriate numerical methods with suitable computer algebra tools. Moreover, students know how to interprete and visualize computational outcomes resulting from numerical algorithms.
Requisiti
Linear Algebra
- Algebra with vectors and matrices
- Elementary solving linear systems of equations (Gauss Pivoting)
- Eigenvectors and Eigenvalues
Analysis
- Univariate and multivariate calculus (differentials, integrals)
- Knowing of simple numerical recipes for equations and integrals (e.g. Bi-Section, Newton, Trapezoidal-Rule, Simpson-Rule...)
- Ordinary differential equations including simple numerical recipes (e.g. Euler)
Basics in Computer Handling
- Operating system, software installation
- Elementary skills in procedural programming
Hardware and Software
- Notebook
- Mathematical software installed (e.g. Mathematica, Matlab, Maple ... according to preference and experience)
Obiettivi di apprendimento
Solving mathematical problems with practial relevance by
- capable handling a computer algebra system (CAS) or appropriate mathematical software
- mastering selected numerical methods
Knowing limits of computer based methods and comprehension of
- some internals of CAS (e.g. representations of numbers and functions)
- the problems of numerical stability, errors from rounding and discretization
- algorithmic complexity (e.g. convergence speed)
Combining analytical methods of CAS with efficient numerical software
Interpreting and visualizing computational results
Categoria modulo
Processing
- data from problems with practical relevance
- by tools from numerical mathematics and analytics
- up to interpretation and visualization of results
Based on a selection of methods listed below
- Solving systems of linear equations (LU-Decomposition, Cholesky Decomposition, Householder Transformations, QR Decomposition, sparse matrix strategies and Gauss-Seidel ...)
- Computations of zeroes and non-linear optimization
- Univariate and multivariate interpolation and approximation (Collocation, Osculation, Splining, Least-Squares Approximation, Chebyshev Approximation ...)
- Numerical differentiation and integration
- Initial and boundary value problems of ordinary differential equations
With consideration of
- Accuracy, efficiency and condition
- Problem identification and method selection
- Computeralgebra in order to establish analytical relations
Metodologie di insegnamento e apprendimento
- Derivation of mathematical facts in lectures
- Software demonstrations and visualizations by the lecturer during the lectures
- Teaching based on problems with practical relevance
- Software examples and additional materials on complimentary website (Zuerich)
- Hints to sources and literature on complimentary website (Zuerich)
- Self-studies based on sources and literature
- Doing homework as a preparation for dedicated exercise lessons
Bibliografia
- Schaum’s Outlines of Numerical Analysis, McGraw-Hill Professional, 2nd edition
- Schwarz, Hans R.; Köckler, Norbert; Numerische Mathematik, Vieweg & Teubner, 7. Auflage
- Bronstein et al., Taschenbuch der Mathematik, Harri Deutsch
- Bradie, Brian, A Friendly Introduction to Numerical Analysis, Prentice-Hall
- Alfio Quarteroni, Riccardo Sacco, Fausto Saleri, M´ethodes Num´eriques - Algorithmes, analyse et applications, Springer, 2007
- Jean-Philippe Grivet, Méthodes numériques appliqués, EDP sciences
- Koepf, Wolfram, Computeralgebra, Springer
- Moler Cleve, Numerical Computing with Matlab, www.mathworks.com/moler/chapters.html
- Erwin Kreyszig, Advanced Engineering Mathematics, Wiley
- Erwin Kreyszig, Advanced Engineering Mathematics – Students Solution Manual and Study Guide, Wiley
- Erwin Kreyszig/E.J. Norminton, Mathematica Computer Guide for Erwin Kreiszigs Advanced Engineering Mathematics, Wiley
- Michael Trott, The Mathematica Guide Book for Numerics, Springer
Scarica il descrittivo completo del modulo
Indietro