Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie:

- 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)

I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati. - 9-12 crediti ECTS in basi teoriche ampliate (FTP)

I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione - 6-9 crediti ECTS in moduli di contesto (CM)

I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.

La descrizione del modulo (scarica il pdf)riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:

- Insegnamento
- Documentazione
- Esame

Machine learning (ML) emerged out of artificial intelligence and computer science as the academic discipline concerned with “giving computers the ability to learn without being explicitly programmed” (A. Samuel, 1959). Today, it is the methodological driver behind the mega-trend of digitalization. ML experts are highly sought after in industry and academia alike.

This course builds upon basic knowledge in math, programming and analytics/statistics as is typically gained in respective undergraduate courses of diverse engineering disciplines. From there, it teaches the foundations of modern machine learning techniques in a way that focuses on practical applicability to real-world problems. The complete process of building a learning system is considered:

- formulating the task at hand as a learning problem;
- extracting useful features from the available data;
- choosing and parameterizing a suitable learning algorithm.

Covered topics include cross-cutting concerns like ML system design and debugging (how to get intuition into learned models and results) as well as feature engineering; covered algorithms include (amongst others) Support Vector Machines (SVM) and ensemble methods.

### Requisiti

**Math**: basic calculus / linear algebra / probability calculus (e.g., derivatives, matrix multiplication, normal distribution)**Statistics**: basic descriptive statistics (e.g., mean, variance, co-variance, histograms, box plots)**Programming**: good command of any structured programming language (e.g., Python, Matlab, R, Java, C, C++)**Analytics**: basic data analysis methods (data pre-processing, linear & logistic regression)

### Obiettivi di apprendimento

- Students
**know**the**background and taxonomy**of machine learning methods - On this basis, they
**formulate**given problems as l**earning tasks**and**select**a**proper learning method** - Students
**are able to convert**a data set into a proper**feature set**fitting for a task at hand - They
**evaluate**the chosen**approach**in a structured way using proper design of experiment - Students
**know how**to select models, and „**debug**“ features and learning algorithms if results do not fit expectations - Students are able to leverage on the evaluation framework to
**tune the parameters**of a given system and**optimize**its performances - Students
**have seen examples of different data**sources / problem types and**are able to acquire additional****expert knowledge**from the scientific literature

### Categoria modulo

**Introduction**(ca. 2 weeks): Convergence for participants with different backgrounds**Supervised learning**(ca. 7 weeks): Learn from labeled data*Cross-cutting topics*: such as feature engineering; ensemble learning; instance vs. model-based approaches, debugging ML systems*Algorithms*: e.g. kNN, decision tree, SVM, ensemble learning (bagging, boosting), graphical models (Bayesian networks), gradient based approaches*bias-variance tradeoff*: hyperparameter tuning, cross-validation, performance metrics**Unsupervised learning**(ca. 3 weeks): Learning without labels*Algorithms*: e.g., clustering, dimensionality reduction, anomaly detection, archetypal analysis**Special chapters**(ca. 2 weeks):*Algorithms*: e.g., reinforcement learning, recommender systems, hidden Markov / Gaussian mixture models

### Metodologie di insegnamento e apprendimento

Classroom teaching; programming exercises (e.g., in Python 3, Jupyter notebooks, Orange)

### Bibliografia

- Aurélien Géron: "
*Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow*", Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilley Media, 2022 - T. Mitchell, “
*Machine Learning*”, 1997 - C. M. Bishop, “
*Pattern Recognition and Machine Learning*”, 2006 - Simon Rogers,
Mark Girolami: “
*A First Course in Machine Learning*”, ISBN-13: 978-0367574642, Chapman and Hall/CRC; 2. Edition, 2016 - G. James et al., “
*An Introduction to Statistical Learning*”, 2014

Scarica il descrittivo completo del modulo

Indietro