Ogni modulo equivale a 3 crediti ECTS. È possibile scegliere un totale di 10 moduli/30 ECTS nelle seguenti categorie:
- 12-15 crediti ECTS in moduli tecnico-scientifici (TSM)
I moduli TSM trasmettono competenze tecniche specifiche del profilo e si integrano ai moduli di approfondimento decentralizzati. - 9-12 crediti ECTS in basi teoriche ampliate (FTP)
I moduli FTP trattano principalmente basi teoriche come la matematica, la fisica, la teoria dell’informazione, la chimica ecc. I moduli ampliano la competenza scientifica dello studente e contribuiscono a creare un importante sinergia tra i concetti astratti e l’applicazione fondamentale per l’innovazione - 6-9 crediti ECTS in moduli di contesto (CM)
I moduli CM trasmettono competenze supplementari in settori quali gestione delle tecnologie, economia aziendale, comunicazione, gestione dei progetti, diritto dei brevetti, diritto contrattuale ecc.
La descrizione del modulo (scarica il pdf) riporta le informazioni linguistiche per ogni modulo, suddivise nelle seguenti categorie:
- Insegnamento
- Documentazione
- Esame
The course starts with an overview of classical engineering physics with special emphasis on balance and constitutive equations (i.e. continuity equations and material laws). The concepts of vector analysis are introduced and then applied to describe spacial phenomena in electrodynamics and thermodynamics. In a next step, this knowledge is extended towards tensors algebra. Tensors enable the description of typical anisotropic effects of solid state physics and modern materials such as stress and strain, double refraction and layered structures. Some of the topics in the course are also treated using mathematical software such as Matlab with the goal to facilitate the student’s understanding and application of numerical simulation methods (e.g., FEA, multiphysics).
Requisiti
Physics, analysis and linear algebra at Bachelor’s level
Obiettivi di apprendimento
- Students are familiar with the most important basic laws of engineering physics for isotropic materials in general form, recognise analogies between different application areas and exploit these for analyzing systems
- Students know about the generalization of the laws for anisotropic materials and can interpret these, especially with regard to application in numerical simulation
- Students master vector analysis and the algebra of tensors together with the standard notation conventions
- Students understand the basics of electrodynamics and thermodynamics transport phenomena in anisotropic systems
- Students understand mechanical elasticity with 3D strain and stress states and are familiar with the material laws in general form for isotropic and anisotropic bodies
- Students understand the piezo-electric effect and its applications in engineering (sensors and actuators)
Contenuti del modulo
- Recapitulation of isotropic material laws (Ohm, Hooke, Fourier, etc.)
- Introduction to vector and tensor calculation: scalar, vectorial and tensorial parameters, tensor algebra,
- Transformation behavior of vectors and tensors
- Hands-on calculation of vector analysis and tensor algebra: electrodynamics, thermodynamics and anisotropic transport phenomena
- Elasticity theory with emphasis on 3D stress states
- Piezo-effect: physical fundamentals
Metodologie di insegnamento e apprendimento
Frontal teaching (approx. 60 %)
Presentation and discussion of case studies and problems, individual problem solving (approx. 40 %)
Bibliografia
[1] R.E. Newham, Properties of Materials, Oxford, 2005
[2] J.F. Nye, Physical Properties of Crystals, Oxford Science Publication, 2004
[3] J. Tichy, Fundamentals of Piezoelectric Sensorics, Springer 2010
[4] E. Kreszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2011
Scarica il descrittivo completo del modulo
Indietro