MSE Master of Science in Engineering

The Swiss engineering master's degree


Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:

  • ​​​​12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
    TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule.
  • 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
    FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können.
  • 6-9 ECTS in Kontextmodulen (CM)
    CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.

In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:

  • Unterricht
  • Dokumentation
  • Prüfung
Numerical methods for building engineering (TSM_NumMeth)

Description of numerical methods and application in building thermodynamics and heat transfer. Modelling complex heat transfer through building construction and for modelling air movement outside and inside the building. Numerical methods for fire simulations. Modeling and solving practical problems in different fields of building engineering.

Eintrittskompetenzen

Solid knowledge in physics, thermodynamics and mathematics. 

Lernziele

  1. Introduce the fundamentals of numerical methods used for the solution of engineering problems.

  2. Improve the competences in modeling practical engineering problems in different fields of building engineering.

  3. Improve the computer skills of the students.

Modulkategorie

 

Part 1) Numerical methods in building thermodynamics and heat transfer:

  • Numerical methods for modelling indoor and weather conditions (thermal comfort, indoor air quality, climatic conditions).
  • Heat conduction in building elements - steady state conditions.
  • Heat conduction in building elements - dynamic conditions:
    • Numerical solutions (Finite Differences);
    • Graphical solutions (Binder-Schmidt-Method);
    • Electrical analogy.
  • Models for the thermal balance of a room:
    • Steady state model;
    • Quasi steady state model;
    • Detailed model of the thermal balance of a room;
    • Models based on the thermal response of the room;
    • Boundary conditions on external surfaces.
  • Introduction to MATLAB software, application on test cases in fields of building engineering.
  • Introduction to IDA-ICE software, application on test cases in fields of building engineering.

Part 2) Numerical methods for modelling complex heat transfer through building construction and for modelling air movement outside and inside the building (Ansys CFX / Ansys Fluent / OpenFOAM).

Part 3) Numerical methods for fire simulations (FDS).

 

Lehr- und Lernmethoden

  • 3 lecture periods per week, with integrated exercise sessions.
  • Teaching: Frontal teaching and storytelling. Discussion of practical cases. Guided learning using lecture notes and textbooks.
  • Exercises: Solving practical problems under the guidance of the tutors (problem solving, modeling and programming in MATLAB, IDA-ICE, Ansys, OpenFOAM, FDS).

Bibliografie

  • Chapra, S. C., Applied Numerical Methods with MATLAB for Engineers and Scientists, McGraw-Hill, 2005.

  • Rao, S. S., Applied Numerical Methods for Engineers and Scientists, Prentice-Hall, 2002.

  • Incropera, F.P., DeWitt, D.P. , Bergman T.L., Lavine, A. S., Incropera's Principles of Heat and Mass Transfer: Global Edition. Wiley, 2017.

Vollständige Modulbeschreibung herunterladen

Zurück