MSE Master of Science in Engineering

The Swiss engineering master's degree


Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:

  • ​​​​12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
    TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule.
  • 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
    FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können.
  • 6-9 ECTS in Kontextmodulen (CM)
    CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.

In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:

  • Unterricht
  • Dokumentation
  • Prüfung
Vectors and Tensors in Engineering Physics (FTP_Tensors)

The course starts with an overview of classical engineering physics with special emphasis of balance and constitutive equations (i.e., continuity equations and material laws). The basic concepts of vector analysis are applied to electrodynamics, various transport phenomena, mechanical elasticity and piezo-electric effects. The concept of tensors enables the description of important anisotropic effects of solid state physics. These effects are present in crystals as well as in layered material systems, which are more and more used in modern technology. The given overview facilitates the student’s understanding and application of numerical simulation methods (e.g., FEA, multiphysics).

Eintrittskompetenzen

  • Physics, analysis, linear algebra at Bachelor’s level ,
  • The mathematical prerequisites are covered by the chapter 7-9 of [4]. The summaries of these chapters are in the appendix of this document.

Lernziele

  • Students are familiar with the most important basic laws of engineering physics for isotropic materials in general view form, recognize analogies between different application areas and exploit these for analyzing systems
  • Students know about the generalization of the laws for anisotropic materials and can interpret these, especially with regard to application in numerical simulation
  • Students master vector analysis and the algebra of tensors together with the standard notation conventions
  • Students understand the basics of electrodynamics and transport phenomena for anisotropic systems
  • Students understand mechanical elasticity with 3D strain and stress states and are familiar with the material laws in general form for isotropic and anisotropic bodies
  • Students understand the piezo-electric effect and its applications in engineering (sensors and actuators)

Modulkategorie

  • Recapitulation of isotropic material laws (Ohm, Hook, electric polarization, heat conduction)
  • Introduction to vector and tensor calculation: scalar, vectorial and tensorial parameters, tensor algebra,
  • Transformation behavior of vectors and tensors
  • Hands-on calculation of vector analysis and tensoralgebra: electrodynamics and anisotropic transport phenomena
  • Elasticity theory with emphasis on 3D stress states
  • Piezo-effect: physical fundamentals
 

Week

 
 

Subject

 
 

MW1

 
 

Introduction, motivation, repetition of fundamental physical laws from engineering physics

 
 

MW2

 
 

Scalars, vectors, divergence, gradient, curl

 
 

MW3

 
 

Integral theorems and applications of vector analysis in physics

 
 

MW4

 
 

Maxwell I: Electro- and magnetostatics

 
 

MW5

 
 

Fundamental mathematical properties of tensors, transformations of tensors

 
 

MW6

 
 

Transport phenomena, Ohm’s law,  heat conduction and diffusion

 
 

MW7

 
 

Elasticity: stress and distortion tensor, thermal expansion

 
 

MW8

 
 

Elasticity: Hooke’s law, tensors of the fourth rank, engineering diagram

 
 

MW9

 
 

Elasticity: 3D stress and distortion states

 
 

MW10

 
 

Elasticity: 3D stress and distortion states

 
 

MW11

 
 

Reserve

 
 

MW12

 
 

Maxwell II: Electrodynamics

 
 

MW13

 
 

Maxwell III: Waves, Maxwell

 
 

MW14

 
 

Piezoelectricity

 

Lehr- und Lernmethoden

Frontal teaching (approx. 60 %)
Presentation and discussion of case studies and problems, individual problem solving (approx. 40 %)

Bibliografie

[1] R.E. Newham, Properties of Materials, Oxford, 2005

[2] J.F. Nye, Physical Properties of Crystals, Oxford Science Publication, 2004

[3] J.Tichy, Fundamentals of Piezoelectric Sensorics, Springer 2010

[4] E. Kreszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2011

Vollständige Modulbeschreibung herunterladen

Zurück