Jedes Modul umfasst 3 ECTS. Sie wählen insgesamt 10 Module/30 ECTS in den folgenden Modulkategorien:
- 12-15 ECTS in Technisch-wissenschaftlichen Modulen (TSM)
TSM-Module vermitteln Ihnen profilspezifische Fachkompetenz und ergänzen die dezentralen Vertiefungsmodule. - 9-12 ECTS in Erweiterten theoretischen Grundlagen (FTP)
FTP-Module behandeln theoretische Grundlagen wie die höhere Mathematik, Physik, Informationstheorie, Chemie usw. Sie erweitern Ihre abstrakte, wissenschaftliche Tiefe und tragen dazu bei, den für die Innovation wichtigen Bogen zwischen Abstraktion und Anwendung spannen zu können. - 6-9 ECTS in Kontextmodulen (CM)
CM-Module vermitteln Ihnen Zusatzkompetenzen aus Bereichen wie Technologiemanagement, Betriebswirtschaft, Kommunikation, Projektmanagement, Patentrecht, Vertragsrecht usw.
In der Modulbeschreibung (siehe: Herunterladen der vollständigen Modulbeschreibung) finden Sie die kompletten Sprachangaben je Modul, unterteilt in die folgenden Kategorien:
- Unterricht
- Dokumentation
- Prüfung
The course starts with an overview of classical engineering physics with special emphasis on balance and constitutive equations (i.e. continuity equations and material laws). The concepts of vector analysis are introduced and then applied to describe spacial phenomena in electrodynamics and thermodynamics. In a next step, this knowledge is extended towards tensors algebra. Tensors enable the description of typical anisotropic effects of solid state physics and modern materials such as stress and strain, double refraction and layered structures. Some of the topics in the course are also treated using mathematical software such as Matlab with the goal to facilitate the student’s understanding and application of numerical simulation methods (e.g., FEA, multiphysics).
Eintrittskompetenzen
Physics, analysis and linear algebra at Bachelor’s level
Lernziele
- Students are familiar with the most important basic laws of engineering physics for isotropic materials in general form, recognise analogies between different application areas and exploit these for analyzing systems
- Students know about the generalization of the laws for anisotropic materials and can interpret these, especially with regard to application in numerical simulation
- Students master vector analysis and the algebra of tensors together with the standard notation conventions
- Students understand the basics of electrodynamics and thermodynamics transport phenomena in anisotropic systems
- Students understand mechanical elasticity with 3D strain and stress states and are familiar with the material laws in general form for isotropic and anisotropic bodies
- Students understand the piezo-electric effect and its applications in engineering (sensors and actuators)
Modulinhalt
- Recapitulation of isotropic material laws (Ohm, Hooke, Fourier, etc.)
- Introduction to vector and tensor calculation: scalar, vectorial and tensorial parameters, tensor algebra,
- Transformation behavior of vectors and tensors
- Hands-on calculation of vector analysis and tensor algebra: electrodynamics, thermodynamics and anisotropic transport phenomena
- Elasticity theory with emphasis on 3D stress states
- Piezo-effect: physical fundamentals
Lehr- und Lernmethoden
Frontal teaching (approx. 60 %)
Presentation and discussion of case studies and problems, individual problem solving (approx. 40 %)
Bibliografie
[1] R.E. Newham, Properties of Materials, Oxford, 2005
[2] J.F. Nye, Physical Properties of Crystals, Oxford Science Publication, 2004
[3] J. Tichy, Fundamentals of Piezoelectric Sensorics, Springer 2010
[4] E. Kreszig, Advanced Engineering Mathematics, 10th edition, Wiley, 2011
Vollständige Modulbeschreibung herunterladen
Zurück